Example program for dtzrzf

This example solves the linear least squares problems
minx bj - Axj 2 ,   j=1,2  
for the minimum norm solutions x1 and x2, where bj is the jth column of the matrix B,
A = -0.09 0.14 -0.46 0.68 1.29 -1.56 0.20 0.29 1.09 0.51 -1.48 -0.43 0.89 -0.71 -0.96 -1.09 0.84 0.77 2.11 -1.27 0.08 0.55 -1.13 0.14 1.74 -1.59 -0.72 1.06 1.24 0.34   and   B= 7.4 2.7 4.2 -3.0 -8.3 -9.6 1.8 1.1 8.6 4.0 2.1 -5.7 .  
The solution is obtained by first obtaining a QR factorization with column pivoting of the matrix A, and then the RZ factorization of the leading k by k part of R is computed, where k is the estimated rank of A. A tolerance of 0.01 is used to estimate the rank of A from the upper triangular factor, R.
Note that the block size (NB) of 64 assumed in this example is not realistic for such a small problem, but should be suitable for large problems.