This example solves the linear least squares problems
for the minimum norm solutions and , where is the th column of the matrix ,
The solution is obtained by first obtaining a factorization with column pivoting of the matrix , and then the factorization of the leading by part of is computed, where is the estimated rank of . A tolerance of is used to estimate the rank of from the upper triangular factor, .
Note that the block size (NB) of assumed in this example is not realistic for such a small problem, but should be suitable for large problems.